Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 881
Filtrar
1.
World J Gastroenterol ; 29(39): 5471-5482, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37900993

RESUMO

BACKGROUND: The small intestine is known to play a crucial role in the development and remission of diabetes mellitus (DM). However, the exact mechanism by which mid-small intestinal bypass improves glucose metabolism in diabetic rats is not fully understood. AIM: To elucidate the mechanisms by which mid-small intestinal bypass improves glucose metabolism. METHODS: Streptozotocin (STZ) was used to induce DM in Sprague-Dawley (SD) rats at a dose of 60 mg/kg. The rats were then randomly divided into two groups: The mid-small intestine bypass (MSIB) group and the sham group (underwent switch laparotomy). Following a 6-wk recovery period post-surgery, the rats underwent various assessments, including metabolic parameter testing, analysis of liver glycogen levels, measurement of key gluconeogenic enzyme activity, characterization of the gut microbiota composition, evaluation of hormone levels, determination of bile acid concentrations, and assessment of the expression of the intestinal receptors Takeda G protein-coupled receptor 5 and farnesoid X receptor. RESULTS: The MSIB group of rats demonstrated improved glucose metabolism and lipid metabolism, along with increased hepatic glycogen content. Furthermore, there was a decrease in the expression of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase 1 and glucose-6-phosphatase. Importantly, the MSIB group exhibited a substantial increase in the abundances of intestinal Lactobacillus, Clostridium symbiosum, Ruminococcus gnavus, and Bilophila. Moreover, higher levels of secondary bile acids, such as intestinal lithocholic acid, were observed in this group. Remarkably, the changes in the gut microbiota showed a significant correlation with the expression of key gluconeogenic enzymes and glucagon-like peptide 1 (GLP-1) at 6 wk postoperatively, highlighting their potential role in glucose regulation. These findings highlight the beneficial effects of mid-small intestine bypass on glucose metabolism and the associated modulation of the gut microbiota. CONCLUSION: The findings of this study demonstrate that the introduction of postoperative intestinal Clostridium symbiosum in the mid-small intestine contributes to the enhancement of glucose metabolism in nonobese diabetic rats. This improvement is attributed to the increased inhibition of hepatic gluconeogenesis mediated by GLP-1, resulting in a favorable modulation of glucose homeostasis.


Assuntos
Clostridium symbiosum , Diabetes Mellitus Experimental , Derivação Gástrica , Ratos , Animais , Gluconeogênese/fisiologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Clostridium symbiosum/metabolismo , Derivação Jejunoileal , Diabetes Mellitus Experimental/cirurgia , Ratos Sprague-Dawley , Glucose/metabolismo , Homeostase , Glicemia/metabolismo
2.
Nat Commun ; 14(1): 6531, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848446

RESUMO

Adiponectin is a secretory protein, primarily produced in adipocytes. However, low but detectable expression of adiponectin can be observed in cell types beyond adipocytes, particularly in kidney tubular cells, but its local renal role is unknown. We assessed the impact of renal adiponectin by utilizing male inducible kidney tubular cell-specific adiponectin overexpression or knockout mice. Kidney-specific adiponectin overexpression induces a doubling of phosphoenolpyruvate carboxylase expression and enhanced pyruvate-mediated glucose production, tricarboxylic acid cycle intermediates and an upregulation of fatty acid oxidation (FAO). Inhibition of FAO reduces the adiponectin-induced enhancement of glucose production, highlighting the role of FAO in the induction of renal gluconeogenesis. In contrast, mice lacking adiponectin in the kidney exhibit enhanced glucose tolerance, lower utilization and greater accumulation of lipid species. Hence, renal adiponectin is an inducer of gluconeogenesis by driving enhanced local FAO and further underlines the important systemic contribution of renal gluconeogenesis.


Assuntos
Adiponectina , Gluconeogênese , Rim , Animais , Masculino , Camundongos , Adiponectina/genética , Adiponectina/metabolismo , Gluconeogênese/genética , Gluconeogênese/fisiologia , Glucose/metabolismo , Rim/metabolismo , Fígado/metabolismo , Camundongos Knockout , Ácido Pirúvico/metabolismo
3.
Exp Mol Med ; 55(7): 1492-1505, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394593

RESUMO

Hepatic glucose production by glucagon is crucial for glucose homeostasis during fasting, yet the underlying mechanisms remain incompletely delineated. Although CD38 has been detected in the nucleus, its function in this compartment is unknown. Here, we demonstrate that nuclear CD38 (nCD38) controls glucagon-induced gluconeogenesis in primary hepatocytes and liver in a manner distinct from CD38 occurring in the cytoplasm and lysosomal compartments. We found that the localization of CD38 in the nucleus is required for glucose production by glucagon and that nCD38 activation requires NAD+ supplied by PKCδ-phosphorylated connexin 43. In fasting and diabetes, nCD38 promotes sustained Ca2+ signals via transient receptor potential melastatin 2 (TRPM2) activation by ADP-ribose, which enhances the transcription of glucose-6 phosphatase and phosphoenolpyruvate carboxykinase 1. These findings shed light on the role of nCD38 in glucagon-induced gluconeogenesis and provide insight into nuclear Ca2+ signals that mediate the transcription of key genes in gluconeogenesis under physiological conditions.


Assuntos
Diabetes Mellitus , Canais de Cátion TRPM , Humanos , Gluconeogênese/fisiologia , Glucagon , Adenosina Difosfato Ribose/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Fígado/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Jejum , Diabetes Mellitus/metabolismo
4.
Exp Mol Med ; 55(7): 1556-1569, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37488285

RESUMO

Melatonin is involved in the regulation of various biological functions. Here, we explored a novel molecular mechanism by which the melatonin-induced sestrin2 (SESN2)-small heterodimer partner (SHP) signaling pathway protects against fasting- and diabetes-mediated hepatic glucose metabolism. Various key gene expression analyses were performed and multiple metabolic changes were assessed in liver specimens and primary hepatocytes of mice and human participants. The expression of the hepatic cereblon (CRBN) and b-cell translocation gene 2 (BTG2) genes was significantly increased in fasting mice, diabetic mice, and patients with diabetes. Overexpression of Crbn and Btg2 increased hepatic gluconeogenesis by enhancing cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CREBH), whereas this phenomenon was prominently ablated in Crbn null mice and Btg2-silenced mice. Interestingly, melatonin-induced SESN2 and SHP markedly reduced hepatic glucose metabolism in diabetic mice and primary hepatocytes, and this protective effect of melatonin was strikingly reversed by silencing Sesn2 and Shp. Finally, the melatonin-induced SESN2-SHP signaling pathway inhibited CRBN- and BTG2-mediated hepatic gluconeogenic gene transcription via the competition of BTG2 and the interaction of CREBH. Mitigation of the CRBN-BTG2-CREBH axis by the melatonin-SESN2-SHP signaling network may provide a novel therapeutic strategy to treat metabolic dysfunction due to diabetes.


Assuntos
Diabetes Mellitus Experimental , Proteínas Imediatamente Precoces , Melatonina , Animais , Humanos , Camundongos , Gluconeogênese/fisiologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fígado/metabolismo , Transdução de Sinais , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Sestrinas/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(23): e2219419120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252972

RESUMO

Prolyl hydroxylase domain (PHD) enzymes change HIF activity according to oxygen signal; whether it is regulated by other physiological conditions remains largely unknown. Here, we report that PHD3 is induced by fasting and regulates hepatic gluconeogenesis through interaction and hydroxylation of CRTC2. Pro129 and Pro615 hydroxylation of CRTC2 following PHD3 activation is necessary for its association with cAMP-response element binding protein (CREB) and nuclear translocation, and enhanced binding to promoters of gluconeogenic genes by fasting or forskolin. CRTC2 hydroxylation-stimulated gluconeogenic gene expression is independent of SIK-mediated phosphorylation of CRTC2. Liver-specific knockout of PHD3 (PHD3 LKO) or prolyl hydroxylase-deficient knockin mice (PHD3 KI) show attenuated fasting gluconeogenic genes, glycemia, and hepatic capacity to produce glucose during fasting or fed with high-fat, high-sucrose diet. Importantly, Pro615 hydroxylation of CRTC2 by PHD3 is increased in livers of fasted mice, diet-induced insulin resistance or genetically obese ob/ob mice, and humans with diabetes. These findings increase our understanding of molecular mechanisms linking protein hydroxylation to gluconeogenesis and may offer therapeutic potential for treating excessive gluconeogenesis, hyperglycemia, and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Humanos , Camundongos , Animais , Glucose/metabolismo , Prolina/metabolismo , Hidroxilação , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Gluconeogênese/fisiologia , Prolil Hidroxilases/metabolismo , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL
6.
Cell Res ; 33(4): 273-287, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806353

RESUMO

The intestine is responsible for nutrient absorption and orchestrates metabolism in different organs during feeding, a process which is partly controlled by intestine-derived hormones. However, it is unclear whether the intestine plays an important role in metabolism during fasting. Here we have identified a novel hormone, famsin, which is secreted from the intestine and promotes metabolic adaptations to fasting. Mechanistically, famsin is shed from a single-pass transmembrane protein, Gm11437, during fasting and then binds OLFR796, an olfactory receptor, to activate intracellular calcium mobilization. This famsin-OLFR796 signaling axis promotes gluconeogenesis and ketogenesis for energy mobilization, and torpor for energy conservation during fasting. In addition, neutralization of famsin by an antibody improves blood glucose profiles in diabetic models, which identifies famsin as a potential therapeutic target for treating diabetes. Therefore, our results demonstrate that communication between the intestine and other organs by a famsin-OLFR796 signaling axis is critical for metabolic adaptations to fasting.


Assuntos
Glicemia , Jejum , Jejum/fisiologia , Glicemia/metabolismo , Gluconeogênese/fisiologia , Hormônios/metabolismo , Corpos Cetônicos/metabolismo , Fígado/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(9): e2216810120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812201

RESUMO

Mitochondria provide essential metabolites and adenosine triphosphate (ATP) for the regulation of energy homeostasis. For instance, liver mitochondria are a vital source of gluconeogenic precursors under a fasted state. However, the regulatory mechanisms at the level of mitochondrial membrane transport are not fully understood. Here, we report that a liver-specific mitochondrial inner-membrane carrier SLC25A47 is required for hepatic gluconeogenesis and energy homeostasis. Genome-wide association studies found significant associations between SLC25A47 and fasting glucose, HbA1c, and cholesterol levels in humans. In mice, we demonstrated that liver-specific depletion of SLC25A47 impaired hepatic gluconeogenesis selectively from lactate, while significantly enhancing whole-body energy expenditure and the hepatic expression of FGF21. These metabolic changes were not a consequence of general liver dysfunction because acute SLC25A47 depletion in adult mice was sufficient to enhance hepatic FGF21 production, pyruvate tolerance, and insulin tolerance independent of liver damage and mitochondrial dysfunction. Mechanistically, SLC25A47 depletion leads to impaired hepatic pyruvate flux and malate accumulation in the mitochondria, thereby restricting hepatic gluconeogenesis. Together, the present study identified a crucial node in the liver mitochondria that regulates fasting-induced gluconeogenesis and energy homeostasis.


Assuntos
Estudo de Associação Genômica Ampla , Gluconeogênese , Humanos , Camundongos , Animais , Gluconeogênese/fisiologia , Glucose/metabolismo , Fígado/metabolismo , Metabolismo Energético/fisiologia , Piruvatos/metabolismo
8.
Nat Rev Gastroenterol Hepatol ; 20(3): 183-194, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36470967

RESUMO

The intestine, like the liver and kidney, in various vertebrates and humans is able to carry out gluconeogenesis and release glucose into the blood. In the fed post-absorptive state, intestinal glucose is sensed by the gastrointestinal nervous system. The latter initiates a signal to the brain regions controlling energy homeostasis and stress-related behaviour. Intestinal gluconeogenesis (IGN) is activated by several complementary mechanisms, in particular nutritional situations (for example, when food is enriched in protein or fermentable fibre and after gastric bypass surgery in obesity). In these situations, IGN has several metabolic and behavioural benefits. As IGN is activated by nutrients capable of fuelling systemic gluconeogenesis, IGN could be a signal to the brain that food previously ingested is suitable for maintaining plasma glucose for a while. This process might account for the benefits observed. Finally, in this Perspective, we discuss how the benefits of IGN in fasting and fed states could explain why IGN emerged and was maintained in vertebrates by natural selection.


Assuntos
Gluconeogênese , Intestinos , Animais , Humanos , Gluconeogênese/fisiologia , Glucose/metabolismo , Homeostase/fisiologia , Fígado/metabolismo
9.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232770

RESUMO

Hepatic glucose production (HGP) is an important component of glucose homeostasis, and deregulated HGP, particularly through gluconeogenesis, contributes to hyperglycemia and pathology of type-2 diabetes (T2D). It has been shown that the gluconeogenic gene expression is governed primarily by the transcription factor cAMP-response element (CRE)-binding protein (CREB) and its coactivator, CREB-regulated transcriptional coactivator 2 (CRTC2). Recently, we have discovered that Sam68, an adaptor protein and Src kinase substrate, potently promotes hepatic gluconeogenesis by promoting CRTC2 stability; however, the detailed mechanisms remain unclear. Here we show that in response to glucagon, Sam68 increases CREB/CRTC2 transactivity by interacting with CRTC2 in the CREB/CRTC2 complex and occupying the CRE motif of promoters, leading to gluconeogenic gene expression and glucose production. In hepatocytes, glucagon promotes Sam68 nuclear import, whereas insulin elicits its nuclear export. Furthermore, ablation of Sam68 in hepatocytes protects mice from high-fat diet (HFD)-induced hyperglycemia and significantly increased hepatic and peripheral insulin sensitivities. Thus, hepatic Sam68 potentiates CREB/CRTC2-mediated glucose production, contributes to the pathogenesis of insulin resistance, and may serve as a therapeutic target for T2D.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diabetes Mellitus Tipo 2 , Gluconeogênese , Glucose , Hepatócitos , Resistência à Insulina , Proteínas de Ligação a RNA , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Expressão Gênica , Glucagon/metabolismo , Gluconeogênese/genética , Gluconeogênese/fisiologia , Glucose/metabolismo , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Homeostase , Hiperglicemia/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Fígado/metabolismo , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
10.
PLoS Comput Biol ; 18(9): e1010469, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36094958

RESUMO

Today, there is great interest in diets proposing new combinations of macronutrient compositions and fasting schedules. Unfortunately, there is little consensus regarding the impact of these different diets, since available studies measure different sets of variables in different populations, thus only providing partial, non-connected insights. We lack an approach for integrating all such partial insights into a useful and interconnected big picture. Herein, we present such an integrating tool. The tool uses a novel mathematical model that describes mechanisms regulating diet response and fasting metabolic fluxes, both for organ-organ crosstalk, and inside the liver. The tool can mechanistically explain and integrate data from several clinical studies, and correctly predict new independent data, including data from a new study. Using this model, we can predict non-measured variables, e.g. hepatic glycogen and gluconeogenesis, in response to fasting and different diets. Furthermore, we exemplify how such metabolic responses can be successfully adapted to a specific individual's sex, weight, height, as well as to the individual's historical data on metabolite dynamics. This tool enables an offline digital twin technology.


Assuntos
Jejum , Glicogênio Hepático , Dieta , Jejum/fisiologia , Gluconeogênese/fisiologia , Fígado/metabolismo , Glicogênio Hepático/metabolismo
11.
Comput Math Methods Med ; 2022: 4614665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936357

RESUMO

The decline in sheep health and meat quality caused by seasonal nutritional deficiencies has always been an important problem in the production of naturally grazing sheep. Glucose metabolism is crucial in ruminants for adequate cell function and maintenance of the body tissues and systems. However, whether glucose metabolism, especially gluconeogenesis, is affected by seasonal grazing conditions has not been fully uncovered. Thus, twelve sheep from two seasons (dry and green grass periods) in natural grazing areas of Inner Mongolia, China, were selected for this study. Their serum glucose, insulin, PC, and PEPCK levels and volatile fatty acid (gluconeogenesis material) concentrations in rumen fluid were analyzed. The expression of key enzymes including PC, PEPCK, GLUT2, and G6P of gluconeogenesis and their regulators INSR, PI3K/AKT and p53-SIRT6-Fox01 in the liver was detected by real-time PCR and western blotting. The results revealed significant variances in gluconeogenesis and its indicators and showed p53-SIRT6-Fox01 as having potential regulation in different grazing periods. This study offers new insights into the mechanism of gluconeogenesis and adaptive regulation between dry grass period and green grass period and also provides a reference for maintaining the health of sheep and meat quality despite seasonal nutritional deficiencies.


Assuntos
Desnutrição , Sirtuínas , Animais , Gluconeogênese/fisiologia , Glucose , Fígado/metabolismo , Desnutrição/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ovinos , Sirtuínas/metabolismo , Proteína Supressora de Tumor p53/genética
12.
Biol Aujourdhui ; 216(1-2): 37-39, 2022.
Artigo em Francês | MEDLINE | ID: mdl-35876519

RESUMO

Intestinal gluconeogenesis (IGN) is a regulatory function of energy homeostasis. IGN-produced glucose is sensed by the gastrointestinal nervous system and sends a signal to regions of the brain regulating food intake and glucose control. IGN is activated by dietary protein and dietary fibre, and by gastric bypass surgery of obesity. Glutamine, propionate and succinate are the main substrates used for glucose production by IGN. Activation of IGN accounts for the well-known satiety effect of protein-enriched diets and the anti-obesity and anti-diabetes effects associated with fibre feeding and gastric bypass surgery. Genetic activation of IGN in mice shows the same beneficial effects, independently of any nutritional manipulation, including a marked prevention of hepatic steatosis under hypercaloric feeding. The activation of IGN could thus be the basis for new approaches to prevent or correct metabolic diseases in humans.


Title: La néoglucogenèse intestinale : une fonction insulinomimétique. Abstract: La néoglucogenèse intestinale (NGI) est une fonction régulatrice de l'homéostasie énergétique. Le glucose qu'elle produit est détecté par le système nerveux gastrointestinal et envoie un signal aux régions du cerveau régulant la prise alimentaire et le contrôle glycémique. L'activation de la NGI par les protéines et les fibres alimentaires et par la chirurgie de type by-pass gastrique permet d'expliquer les effets anti-obésité et anti-diabète des régimes enrichis en protéines et/ou en fibres et de la chirurgie bariatrique. L'activation génétique de la NGI chez la souris présente les mêmes effets bénéfiques, indépendamment de toute manipulation nutritionnelle. L'activation de la NGI pourrait ainsi être la base de nouvelles approches préventives ou correctives des maladies métaboliques chez l'homme.


Assuntos
Gluconeogênese , Resistência à Insulina , Animais , Fibras na Dieta/metabolismo , Gluconeogênese/fisiologia , Glucose/metabolismo , Homeostase , Humanos , Insulina/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Obesidade/metabolismo
13.
J Nutr Biochem ; 109: 109104, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863586

RESUMO

Iron exerts significant influences on glucose metabolism. However, the regulatory mechanisms underlying disordered glucose response remains largely unclear. The aim of this study was to examine the impact of dietary iron on hepatic gluconeogenesis in mice and in rat liver-derived cells. High iron models of C57BL/6J mice were fed with 1.25 g Fe/kg diets for 9 weeks, and high-iron BRL-3A cell models were treated with 250 µmol/L FeSO4 for 12 h and 24 h. Our data showed that higher iron intake resulted in higher hepatic iron without iron toxicity, and reduced body weight gain with no difference of food intakes. High dietary iron significantly increased 61% of hepatic glycogen deposition, but exhibited impairment in glucose responses in mice. Moreover, high dietary iron suppressed hepatic gluconeogenesis by repressing the expression of key gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Meanwhile, mice fed with higher iron diets exhibited both decreased AMP-activated protein kinase (AMPK) activity and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) protein levels. Furthermore, in BRL-3A cells, iron treatment increased cellular glucose uptake, and altered gluconeogenesis rhythmically by regulating the activation of AMPK and expression of PGC-1α successively. This study demonstrated that dietary high iron was able to increase hepatic glycogen deposition by enhancement of glucose uptake, and suppress hepatic gluconeogenesis by regulation of AMPK and PGC-1α.


Assuntos
Gluconeogênese , Ferro da Dieta , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Gluconeogênese/fisiologia , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Homeostase , Ferro/metabolismo , Fígado/metabolismo , Glicogênio Hepático/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosfoenolpiruvato/metabolismo , Ratos , Fatores de Transcrição/metabolismo
14.
Nat Commun ; 13(1): 3041, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650207

RESUMO

Protein degradation, a major eukaryotic response to cellular signals, is subject to numerous layers of regulation. In yeast, the evolutionarily conserved GID E3 ligase mediates glucose-induced degradation of fructose-1,6-bisphosphatase (Fbp1), malate dehydrogenase (Mdh2), and other gluconeogenic enzymes. "GID" is a collection of E3 ligase complexes; a core scaffold, RING-type catalytic core, and a supramolecular assembly module together with interchangeable substrate receptors select targets for ubiquitylation. However, knowledge of additional cellular factors directly regulating GID-type E3s remains rudimentary. Here, we structurally and biochemically characterize Gid12 as a modulator of the GID E3 ligase complex. Our collection of cryo-EM reconstructions shows that Gid12 forms an extensive interface sealing the substrate receptor Gid4 onto the scaffold, and remodeling the degron binding site. Gid12 also sterically blocks a recruited Fbp1 or Mdh2 from the ubiquitylation active sites. Our analysis of the role of Gid12 establishes principles that may more generally underlie E3 ligase regulation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Ubiquitina-Proteína Ligases , Microscopia Crioeletrônica , Gluconeogênese/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
15.
J Cell Biochem ; 123(8): 1327-1339, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644013

RESUMO

Gluconeogenesis is one of the key processes through which the kidney contributes to glucose homeostasis. Urinary exosomes (uE) have been used to study renal gene regulation noninvasively in humans and rodents. Recently, we demonstrated fast-fed regulation of phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme for gluconeogenesis, in human uE. The regulation was impaired in subjects with early insulin resistance. Here, we studied primary human proximal tubule cells (hPT) and human uE to elucidate a potential link between insulin resistance and fast-fed regulation of renal PEPCK. We demonstrate that fasted hPTs had higher PEPCK and insulin receptor substrate-2 (IRS2) mRNA and protein levels, relative to fed cells. The fast-fed regulation was, however, attenuated in insulin receptor knockdown (IRKO) hPTs. The IRKO was confirmed by the blunted insulin-induced response on PEPCK, PGC1α, p-IR, and p-AKT expression in IRKO cells. Exosomes secreted by the wild-type or IRKO hPT showed similar regulation to the respective hPT. Similarly, in human uE, the relative abundance of IRS-2 mRNA (to IRS1) was higher in the fasted state relative to the fed condition. However, the fast-fed difference was absent in subjects with early insulin resistance. These subjects had higher circulating glucagon levels relative to subjects with optimal insulin sensitivity. Furthermore, in hPT cells, glucagon significantly induced PEPCK and IRS2 gene, and gluconeogenesis. IR knockdown in hPT cells further increased the gene expression levels. Together the data suggest that reduced insulin sensitivity and high glucagon in early insulin resistance may impair renal gluconeogenesis via IRS2 regulation.


Assuntos
Gluconeogênese , Resistência à Insulina , Glucagon/metabolismo , Gluconeogênese/fisiologia , Humanos , Insulina/metabolismo , Rim/metabolismo , Fígado/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , RNA Mensageiro/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
16.
Diabetes ; 71(7): 1373-1387, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35476750

RESUMO

Excessive hepatic glucose production (HGP) is a key factor promoting hyperglycemia in diabetes. Hepatic cryptochrome 1 (CRY1) plays an important role in maintaining glucose homeostasis by suppressing forkhead box O1 (FOXO1)-mediated HGP. Although downregulation of hepatic CRY1 appears to be associated with increased HGP, the mechanism(s) by which hepatic CRY1 dysregulation confers hyperglycemia in subjects with diabetes is largely unknown. In this study, we demonstrate that a reduction in hepatic CRY1 protein is stimulated by elevated E3 ligase F-box and leucine-rich repeat protein 3 (FBXL3)-dependent proteasomal degradation in diabetic mice. In addition, we found that GSK3ß-induced CRY1 phosphorylation potentiates FBXL3-dependent CRY1 degradation in the liver. Accordingly, in diabetic mice, GSK3ß inhibitors effectively decreased HGP by facilitating the effect of CRY1-mediated FOXO1 degradation on glucose metabolism. Collectively, these data suggest that tight regulation of hepatic CRY1 protein stability is crucial for maintaining systemic glucose homeostasis.


Assuntos
Criptocromos , Diabetes Mellitus Experimental , Hiperglicemia , Animais , Criptocromos/genética , Criptocromos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Gluconeogênese/fisiologia , Glucose/metabolismo , Glucose/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Hiperglicemia/metabolismo , Fígado/metabolismo , Camundongos
17.
J Am Soc Nephrol ; 33(4): 810-827, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35273087

RESUMO

INTRODUCTION: CKD is associated with alterations of tubular function. Renal gluconeogenesis is responsible for 40% of systemic gluconeogenesis during fasting, but how and why CKD affects this process and the repercussions of such regulation are unknown. METHODS: We used data on the renal gluconeogenic pathway from more than 200 renal biopsies performed on CKD patients and from 43 kidney allograft patients, and studied three mouse models, of proteinuric CKD (POD-ATTAC), of ischemic CKD, and of unilateral urinary tract obstruction. We analyzed a cohort of patients who benefitted from renal catheterization and a retrospective cohort of patients hospitalized in the intensive care unit. RESULTS: Renal biopsies of CKD and kidney allograft patients revealed a stage-dependent decrease in the renal gluconeogenic pathway. Two animal models of CKD and one model of kidney fibrosis confirm gluconeogenic downregulation in injured proximal tubule cells. This shift resulted in an alteration of renal glucose production and lactate clearance during an exogenous lactate load. The isolated perfused kidney technique in animal models and renal venous catheterization in CKD patients confirmed decreased renal glucose production and lactate clearance. In CKD patients hospitalized in the intensive care unit, systemic alterations of glucose and lactate levels were more prevalent and associated with increased mortality and a worse renal prognosis at follow-up. Decreased expression of the gluconeogenesis pathway and its regulators predicted faster histologic progression of kidney disease in kidney allograft biopsies. CONCLUSION: Renal gluconeogenic function is impaired in CKD. Altered renal gluconeogenesis leads to systemic metabolic changes with a decrease in glucose and increase in lactate level, and is associated with a worse renal prognosis.


Assuntos
Gluconeogênese , Insuficiência Renal Crônica , Animais , Gluconeogênese/fisiologia , Humanos , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Camundongos , Insuficiência Renal Crônica/metabolismo , Estudos Retrospectivos
18.
J Diabetes Res ; 2022: 1755563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132380

RESUMO

As an active form of vitamin D (VD), 1,25-dihydroxyvitamin D (1,25(OH)2D3) is involved in the development of many metabolic diseases, such as diabetes, autoimmune diseases, and tumours. While prospective epidemiological studies have consistently implicated VD deficiency in the regulation of glucose metabolism and insulin sensitivity, the specific mechanism remains unclear. Here, we generated 1α(OH)ase-null mice (targeted ablation of the 25-hydroxyvitamin D 1α hydroxylase enzyme) and found that these mice developed hepatic glucose overproduction, glucose intolerance, and hepatic insulin resistance accompanied by reduced Sirtuin 1 (Sirt1) expression. The chromatin immunoprecipitation (ChIP) and a luciferase reporter assay revealed that 1,25(OH)2D3-activated VD receptor (VDR) directly interacted with one VD response element (VDRE) in the Sirt1 promoter to upregulate Sirt1 transcription, triggering a cascade of serine/threonine kinase (AKT) phosphorylation at S473 and FOXO1 phosphorylation at S256. This phosphorylation cascade reduced the expression of gluconeogenic genes, eventually attenuating glucose overproduction in the liver. In addition, a signaling pathway was found to modulate gluconeogenesis involving VDR, Sirt1, Rictor (a component of mTOR complex 2 [mTorc2]), AKT, and FOXO1, and Sirt1 and FOXO1 were identified as key modulators of dysregulated gluconeogenesis due to VD deficiency.


Assuntos
Gluconeogênese/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuína 1/metabolismo , Deficiência de Vitamina D/complicações , Animais , Modelos Animais de Doenças , Fígado/anormalidades , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sirtuína 1/farmacologia
19.
Sci Rep ; 12(1): 1415, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082330

RESUMO

Intestinal gluconeogenesis (IGN), gastric bypass (GBP) and gut microbiota positively regulate glucose homeostasis and diet-induced dysmetabolism. GBP modulates gut microbiota, whether IGN could shape it has not been investigated. We studied gut microbiota and microbiome in wild type and IGN-deficient mice, undergoing GBP or not, and fed on either a normal chow (NC) or a high-fat/high-sucrose (HFHS) diet. We also studied fecal and urine metabolome in NC-fed mice. IGN and GBP had a different effect on the gut microbiota of mice fed with NC and HFHS diet. IGN inactivation increased abundance of Deltaproteobacteria on NC and of Proteobacteria such as Helicobacter on HFHS diet. GBP increased abundance of Firmicutes and Proteobacteria on NC-fed WT mice and of Firmicutes, Bacteroidetes and Proteobacteria on HFHS-fed WT mice. The combined effect of IGN inactivation and GBP increased abundance of Actinobacteria on NC and the abundance of Enterococcaceae and Enterobacteriaceae on HFHS diet. A reduction was observed in the amounf of short-chain fatty acids in fecal (by GBP) and in both fecal and urine (by IGN inactivation) metabolome. IGN and GBP, separately or combined, shape gut microbiota and microbiome on NC- and HFHS-fed mice, and modify fecal and urine metabolome.


Assuntos
Derivação Gástrica/métodos , Microbioma Gastrointestinal/fisiologia , Gluconeogênese/fisiologia , Intestinos/metabolismo , Metaboloma , Estômago/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , DNA Bacteriano/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Enterococcaceae/classificação , Enterococcaceae/genética , Enterococcaceae/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Estômago/microbiologia , Estômago/cirurgia
20.
Mol Med Rep ; 25(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35039874

RESUMO

Type­2 diabetes mellitus (T2DM) causes several complications that affect the quality of life and life span of patients. Hyperbaric oxygen therapy (HBOT) has been used to successfully treat several diseases, including carbon monoxide poisoning, ischemia, infections and diabetic foot ulcer, and increases insulin sensitivity in T2DM. The present study aimed to determine the effect of HBOT on ß­cell function and hepatic gluconeogenesis in streptozotocin (STZ)­induced type­2 diabetic mice. To establish a T2DM model, 7­week­old male C57BL/6J mice were fed a high­fat diet (HFD) and injected once daily with low­dose STZ for 3 days after 1­week HFD feeding. At the 14th week, HFD+HBOT and T2DM+HBOT groups received 1­h HBOT (2 ATA; 100% pure O2) daily from 5:00 to 6:00 p.m. for 7 days. The HFD and T2DM groups were maintained under normobaric oxygen conditions and used as controls. During HBOT, the 12­h nocturnal food intake and body weight were measured daily. Moreover, blood glucose was measured by using a tail vein prick and a glucometer. After the final HBO treatment, all mice were sacrificed to conduct molecular biology experiments. Fasting insulin levels of blood samples of sacrificed mice were measured by an ultrasensitive ELISA kit. Pancreas and liver tissues were stained with hematoxylin and eosin, while immunohistochemistry was performed to determine the effects of HBOT on insulin resistance. TUNEL was used to determine the effects of HBOT on ß­cell apoptosis, and immunoblotting was conducted to determine the ß­cell apoptosis pathway. HBOT notably reduced fasting blood glucose and improved insulin sensitivity in T2DM mice. After HBOT, ß­cell area and ß­cell mass in T2DM mice were significantly increased. HBOT significantly decreased the ß­cell apoptotic rate in T2DM mice via the pancreatic Bcl­2/caspase­3/poly(ADP­ribose) polymerase (PARP) apoptosis pathway. Moreover, HBOT improved the morphology of the liver tissue and increased hepatic glycogen storage in T2DM mice. These findings suggested that HBOT ameliorated the insulin sensitivity of T2DM mice by decreasing the ß­cell apoptotic rate via the pancreatic Bcl­2/caspase­3/PARP apoptosis pathway.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Gluconeogênese/fisiologia , Oxigenoterapia Hiperbárica/métodos , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Animais , Apoptose/fisiologia , Glicemia/metabolismo , Western Blotting , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Jejum/sangue , Teste de Tolerância a Glucose/métodos , Humanos , Insulina/sangue , Células Secretoras de Insulina/citologia , Masculino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...